The Tombusvirus-encoded P19: from irrelevance to elegance (2024)

  • Hull, R. Matthews' Plant Virology (Academic Press, London, 2002).

    Google Scholar

  • Hillman, B. I. et al. A defective interfering RNA that contains a mosaic of a plant virus genome. Cell 51, 427–433 (1987).

    Article CAS Google Scholar

  • Yamamura, Y. & Scholthof, H. B. Pathogen profile: tomato bushy stunt virus: a resilient model system for studying virus–plant interactions. Mol. Plant Pathol. 6, 491–502 (2005).

    Article CAS Google Scholar

  • Russo, M. et al. Molecular biology of Tombusviridae. Adv. Virus Res. 44, 381–428 (1994).

    Article CAS Google Scholar

  • Martelli, G. P. et al. in The Plant Viruses (ed. Koenig, R.) 13–72 (Plenum Press, New York, 1988).

    Book Google Scholar

  • Grieco, F. et al. Nucleotide sequence of the 3′-terminal region of cymbidium ringspot virus RNA. J. Gen. Virol. 70, 2533–2538 (1989).

    Article CAS Google Scholar

  • Hayes, R. J. et al. Gene mapping and expression of tomato bushy stunt virus. J. Gen. Virol. 69, 3047–3057 (1988).

    Article CAS Google Scholar

  • Hillman, B. I. et al. Organization of tomato bushy stunt virus genome: characterization of the coat protein gene and the 3′ terminus. Virology 169, 42–50 (1989).

    Article CAS Google Scholar

  • Tavazza, M. et al. Nucleotide sequence, genomic organization and synthesis of infectious transcripts from a full-length clone of artichoke mottle crinkle virus. J. Gen. Virol. 75, 1515–1524 (1994).

    Article CAS Google Scholar

  • Rubino, L. et al. Molecular cloning and complete nucleotide sequence of carnation italian ringspot tombusvirus genomic and defective interfering RNAs. Arch. Virol. 140, 2027–2039 (1995).

    Article CAS Google Scholar

  • Burgyan, J. et al. Synthesis of infectious RNA from full-length cloned cDNA to RNA of cymbidium ringspot tombusvirus. J. Gen. Virol. 71, 1857–1860 (1990).

    Article CAS Google Scholar

  • Hearne, P. Q. et al. The complete genome structure and synthesis of infectious RNA from clones of tomato bushy stunt virus. Virology 177, 141–151 (1990).

    Article CAS Google Scholar

  • Rochon, D. M. & Johnston, J. C. Infectious transcripts from cloned cucumber necrosis virus cDNA: evidence for a bifunctional subgenomic mRNA. Virology 181, 656–665 (1991).

    Article CAS Google Scholar

  • White, K. A. & Nagy, P. D. Advances in the molecular biology of tombusviruses: gene expression, genome replication, and recombination. Prog. Nucleic Acid Res. Mol. Biol. 78, 187–226 (2004).

    Article CAS Google Scholar

  • Choi, I. R. et al. Regulatory activity of distal and core RNA elements in Tombusvirus subgenomic mRNA2 transcription. J. Biol. Chem. 276, 41761–41768 (2001).

    Article CAS Google Scholar

  • Wu, B. & White, K. A. A primary determinant of cap-independent translation is located in the 3′-proximal region of the tomato bushy stunt virus genome. J. Virol. 73, 8982–8988 (1999).

    CAS PubMed PubMed Central Google Scholar

  • Johnston, J. C. & Rochon, D. M. Both codon context and leader length contribute to efficient expression of two overlapping open reading frames of a cucumber necrosis virus bifunctional subgenomic mRNA. Virology 221, 232–239 (1996).

    Article CAS Google Scholar

  • Johnston, J. C. & Rochon, D. M. Deletion analysis of the promoter for the cucumber necrosis virus 0.9-kb subgenomic RNA. Virology 214, 100–109 (1995).

    Article CAS Google Scholar

  • Scholthof, H. B. et al. The biological activity of two tombusvirus proteins translated from nested genes is influenced by dosage control via context-dependent leaky scanning. Mol. Plant Microbe Interact. 12, 670–679 (1999).

    Article CAS Google Scholar

  • Scholthof, H. B. et al. Identification of tomato bushy stunt virus host-specific symptom determinants by expression of individual genes from a potato virus X vector. Plant Cell 7, 1157–1172 (1995).

    Article CAS Google Scholar

  • Qiu, W. & Scholthof, H. B. Effects of inactivation of the coat protein and movement genes of Tomato bushy stunt virus on early accumulation of genomic and subgenomic RNAs. J. Gen. Virol. 82, 3107–3114 (2001).

    Article CAS Google Scholar

  • Rochon, D. M. Rapid de novo generation of defective interfering RNA by cucumber necrosis mutants that do not express the 20-kDa nonstructural protein. Proc. Natl Acad. Sci. USA 88, 11153–11157 (1991).

    Article CAS Google Scholar

  • Dalmay, T. et al. Functional analysis of cymbidium ringspot virus genome. Virology 194, 697–704 (1993).

    Article CAS Google Scholar

  • Scholthof, H. B. et al. Tomato bushy stunt virus spread is regulated by two nested genes that function in cell-to-cell movement and host-dependent systemic invasion. Virology 213, 425–438 (1995).

    Article CAS Google Scholar

  • Chu, M. et al. Genetic dissection of tomato bushy stunt virus p19-protein-mediated host-dependent symptom induction and systemic invasion. Virology 266, 79–87 (2000).

    Article CAS Google Scholar

  • Turina, M. et al. A newly identified role for the Tomato bushy stunt virus P19 in short distance spread. Molec. Plant Pathol. 4, 67–72 (2003).

    Article CAS Google Scholar

  • Vargason, J. M. et al. Size selective recognition of siRNA by an RNA silencing suppressor. Cell 115, 799–811 (2003).

    Article CAS Google Scholar

  • Scholthof, K. -B. G. et al. The effect of defective interfering RNAs on the accumulation of tomato bushy stunt virus proteins and implications for disease attenuation. Virology 211, 324–328 (1995).

    Article CAS Google Scholar

  • Voinnet, O. Induction and suppression of RNA silencing: insights from viral infections. Nature Rev. Genetics 6, 206–220 (2005).

    Article CAS Google Scholar

  • Anandalakshmi, R. et al. A viral suppressor of gene silencing in plants. Proc. Natl Acad. Sci. USA 95, 13079–13084 (1998).

    Article CAS Google Scholar

  • Brigneti, G. et al. Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. EMBO J. 17, 6739–6746 (1998).

    Article CAS Google Scholar

  • Kasschau, K. D. & Carrington, J. C. A counterdefensive strategy of plant viruses: suppression of posttranscriptional gene silencing. Cell 95, 461–470 (1998).

    Article CAS Google Scholar

  • Voinnet, O. et al. Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses of plants. Proc. Natl Acad. Sci. USA 96, 14147–14152 (1999).

    Article CAS Google Scholar

  • Roth, B. M. et al. Plant viral suppressors of RNA silencing. Virus Res. 102, 97–108 (2004).

    Article CAS Google Scholar

  • Scholthof, H. B. Plant virus transport: motions of functional equivalence. Trends Plant Sci. 10, 376–382 (2005).

    Article CAS Google Scholar

  • Qu, F. & Morris, T. J. Suppressors of RNA silencing encoded by plant viruses and their role in virus infection. FEBS Lett. 579, 5958–5964 (2005).

    Article CAS Google Scholar

  • Silhavy, D. & Burgyan, J. Effects and side-effects of viral RNA silencing suppressors on short RNAs. Trends Plant Sci. 9, 76–83 (2004).

    Article CAS Google Scholar

  • Li, H. W. & Ding, S. W. Antiviral silencing in animals. FEBS Lett. 579, 5965–5973 (2005).

    Article CAS Google Scholar

  • Baulcombe, D. RNA silencing in plants. Nature 431, 356–363 (2004).

    Article CAS Google Scholar

  • Szittya, G. et al. Short defective interfering RNAs of tombusviruses are not targeted but trigger post-transcriptional gene silencing against their helper virus. Plant Cell 14, 1–15 (2002).

    Article Google Scholar

  • Qu, F. & Morris, T. J. Efficient infection of Nicotiana benthamiana by Tomato bushy stunt virus is facilitated by the coat protein and maintained by p19 through suppression of gene silencing. Mol. Plant Microbe Interact. 15, 193–202 (2002).

    Article CAS Google Scholar

  • Qiu, W. P. et al. Tombusvirus P19-mediated suppression of virus induced gene silencing is controlled by genetic and dosage features that influence pathogenicity. Mol. Plant Microbe Interact. 15, 269–280 (2002).

    Article CAS Google Scholar

  • Havelda, Z. et al. In situ characterization of cymbidium ringspot tombusvirus infection-induced posttranscriptional gene silencing in Nicotiana benthamiana. J. Virol. 77, 6082–6086 (2003).

    Article CAS Google Scholar

  • Silhavy, D. et al. A viral protein suppresses RNA silencing and binds silencing-generated, 21- to 25-nucleotide double-stranded RNAs. EMBO J. 21, 3070–3080 (2002).

    Article CAS Google Scholar

  • Szittya, G. et al. Low temperature inhibits RNA silencing-mediated defence by the control of siRNA generation. EMBO J. 22, 633–640 (2003).

    Article CAS Google Scholar

  • Papp, I. et al. Evidence for nuclear processing of plant microRNA and short-interfering RNA precursors. Plant Physiol. 132, 1382–1390 (2003).

    Article CAS Google Scholar

  • Uhrig, J. F. et al. Relocalization of nuclear ALY proteins to the cytoplasm by the tomato bushy stunt virus P19 pathogenicity protein. Plant Physiol. 135, 2411–2423 (2004).

    Article CAS Google Scholar

  • Park, J. -W. et al. The multifunctional plant viral suppressor of gene silencing P19 interacts with itself and an RNA binding host protein. Virology 323, 49–58 (2004).

    Article CAS Google Scholar

  • Lakatos, L. et al. Molecular mechanism of RNA silencing suppression mediated by the P19 protein of tombusviruses. EMBO J. 23, 876–884 (2004).

    Article CAS Google Scholar

  • Desvoyes, B. et al. A novel plant homeodomain protein interacts in a functionally relevant manner with a virus movement protein. Plant Physiol. 129, 1521–1532 (2002).

    Article CAS Google Scholar

  • Xie, Z. et al. Genetic and functional diversification of small RNA pathways in plants. PLoS Biol. 2, e104 (2004).

    Article Google Scholar

  • Dunoyer, P. et al. DICER-LIKE 4 is required for RNA interference and produces the 21-nucleotide small interfering RNA component of the plant cell-to-cell silencing signal. Nature Genet. 37, 1356–1360 (2005).

    Article CAS Google Scholar

  • Molnar, A. et al. Plant virus-derived small interfering RNAs originate predominantly from highly structured single-stranded viral RNAs. J. Virol. 79, 7812–7818 (2005).

    Article CAS Google Scholar

  • Ye, K. et al. Recognition of small interfering RNA by a viral suppressor of RNA silencing. Nature 426, 874–878 (2003).

    Article CAS Google Scholar

  • Chapman, E. et al. Viral RNA silencing suppressors inhibit the microRNA pathway at an intermediate step. Genes Dev. 18, 1179–1186 (2004).

    Article CAS Google Scholar

  • Dunoyer, P. et al. Probing the microRNA and small interfering RNA pathways with virus-encoded suppressors of RNA silencing. Plant Cell 16, 1235–1250 (2004).

    Article CAS Google Scholar

  • Li, W. X. et al. Interferon antagonist proteins of influenza and vaccinia viruses are suppressors of RNA silencing. Proc. Natl Acad. Sci. USA 101, 1350–1355 (2004).

    Article CAS Google Scholar

  • Lecellier, C. H. et al. A cellular microRNA mediates antiviral defense in human cells. Science 308, 557–560 (2005).

    Article CAS Google Scholar

  • Lu, R. et al. Animal virus replication and RNAi-mediated antiviral silencing in Caenorhabditis elegans. Nature 436, 1040–1043 (2005).

    Article CAS Google Scholar

  • Voinnet, O. et al. An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J. 33, 949–956 (2003).

    Article CAS Google Scholar

  • Burgyan, J. et al. The ORF1 products of tombusviruses play a crucial role in lethal necrosis of virus-infected plants. J. Virol. 74, 10873–10881 (2000).

    Article CAS Google Scholar

  • Omarov, R. et al. Biological relevance of a stable interaction between the tombusvirus-encoded P19 and siRNAs. J. Virol. (in the press).

  • Scholthof, H. B. et al. The capsid protein gene of tomato bushy stunt virus is dispensable for systemic movement and can be replaced for localized expression of foreign genes. Mol. Plant Microbe Interact. 6, 309–322 (1993).

    Article CAS Google Scholar

  • Zamore, P. D. Plant RNAi: how a viral silencing suppressor inactivates siRNA. Curr. Biol. 14, 198–200 (2004).

    Article Google Scholar

  • Havelda, Z. et al. Defective interfering RNA hinders the activity of a tombusvirus-encoded posttranscriptional gene silencing suppressor. J. Virol. 79, 450–457 (2005).

    Article CAS Google Scholar

  • Rochon, D. M. & Tremaine, J. H. Complete nucleotide sequence of the cucumber necrosis virus genome. Virology 169, 251–259 (1989).

    Article CAS Google Scholar

  • The Tombusvirus-encoded P19: from irrelevance to elegance (2024)

    References

    Top Articles
    Latest Posts
    Article information

    Author: Otha Schamberger

    Last Updated:

    Views: 5495

    Rating: 4.4 / 5 (55 voted)

    Reviews: 86% of readers found this page helpful

    Author information

    Name: Otha Schamberger

    Birthday: 1999-08-15

    Address: Suite 490 606 Hammes Ferry, Carterhaven, IL 62290

    Phone: +8557035444877

    Job: Forward IT Agent

    Hobby: Fishing, Flying, Jewelry making, Digital arts, Sand art, Parkour, tabletop games

    Introduction: My name is Otha Schamberger, I am a vast, good, healthy, cheerful, energetic, gorgeous, magnificent person who loves writing and wants to share my knowledge and understanding with you.